PhytoTechnology Laboratories®

Helping to Build a Better Tomorrow through Plant Science™

Product Information Sheet

K559 Kasugamycin Hydrochloride Monohydrate

Synonyms:	3-O-[2-amino-4-[(carboxyiminomethyl)amino]-2,3,4,6-
	tetradeoxy-α-D-arabino-hexopyranosyl]-D-chiro-inositol
	Hydrochloride Monohydrate
CAS:	6980-18-3
Formula:	C ₁₄ H ₂₅ N ₃ O ₉ *HCI*H ₂ O
Mol. Weight:	433.8
Properties	

Form:	Powder
Appearance:	Cream to Tan Powder
Application:	Plant Tissue Culture Antibiotic Antimycotic
Solubility:	Soluble in Water
Storage Temp:	2 to 6 °C

Application Notes

Kasugamycin is an aminoglycoside antibiotic derived from *Streptomyces kasugaensis*. It has similar mode of action to that of streptomycin. In the ribosomal subunit, kasugamycin inhibits polypeptide synthesis by interfering with the aminoacyl-sRNA from binding to the messenger-ribosome complex¹; however, because kasugamycin does not have the deoxystreptamine moiety, it does not exhibit miscoding activity like other aminoglycoside antibiotics.² Kasugamycin is especially effective against *Pseudomonas aeruginosa* and *Piricularia oryzae*.¹⁻³

Minimum inhibitory concentration (MIC) of kasugamycin has been reported for many bacteria. MIC for *Pseudomonas* sp. is 64 to 500 μ g/mL, *Staphylococcus aureus* is greater than 500 μ g/mL, and *Escherichia coli* is 500 μ g/mL.⁴

Please Note: It is the sole responsibility of the purchaser to determine the appropriateness of this product for the specific plants that are being cultured and applications that are being used.

References

- 1. Tanaka, Nobuo, Hideyo Yamaguchi, and Hamao Umezawa. 1966. Mechanism of kasugamycin action on polypeptie synthesis. *Journal of Biochemistry*. Vol. 60(4). Pp. 429-434.
- 2. Masukawa, Hiroshi, Nobuo Tanaka, and Hamao Umezawa. 1968. Inhibition by kasugamycin of protein synthesis in *Piricularia oryzae*. *Journal of Antibiotics*. Vol. 2(1). Pp. 73-74.
- Barbara S Schuwirth, J Michael Day, Cathy W Hau, Gary R Janssen, Albert E Dahlberg, Jamie H Doudna Cate, and Antón Vila-Sanjurjo. 2006. Structural analysis of kasugamycin inhibition of translation. *Nat. Struct. Mol. Biol.* Vol.13(10). Pp. 879-886.
- 4. Levitan, Alexandar A. 1967. *In vitro* antibacterial activity of kasugamycin. *Applied Microbiology*. Vol 15(4). Pp. 750-753.

PhytoTechnology Laboratories®